Abstract
The morphology of some lithified wind-blown, carbonate dunes in The Bahamas preserves the signature of erosion from paleo-marine processes: wave-induced swash, scarping, and longshore transport. Digital elevation models were used to distinguish between two dune morphotypes—those disconnected versus connected to beach processes. Dune sinuosity and upwind slope were quantified and used to interpret which dunes remained beach-attached and subject to marine erosion and processes versus dunes that became disconnected from the shoreline via inland migration or shoreline regression. Disconnected dunes possess low slopes over stoss surfaces with sinuous planforms mimicking their crestlines. Beach-connected foredunes preserve steep, kilometers-long linear upwind faces, which are interpreted to be signatures of beach-dune morphodynamics. Foredune morphology serves as a proxy for shoreline position during past sea-level high-stands, while the basal elevations of their stoss dune toes provide an upper limit on the beach and adjacent sea level. A growing library of digital topography will allow for this tool to be used to interpret global paleo-shoreline positions through time and space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.