Abstract
Integrating 2D materials into high-quality optical microcavities opens the door to fascinating many-particle phenomena including the formation of exciton–polaritons. These are hybrid quasi-particles inheriting properties of both the constituent photons and excitons. In this work, we investigate the so-far overlooked impact of dark excitons on the momentum-resolved absorption spectra of hBN-encapsulated WSe2 and MoSe2 monolayers in the strong-coupling regime. In particular, thanks to the efficient phonon-mediated scattering of polaritons into energetically lower dark exciton states, the absorption of the lower polariton branch in WSe2 is much higher than in MoSe2. It shows unique step-like increases in the momentum-resolved profile indicating opening of specific scattering channels. We study how different externally accessible quantities, such as temperature or mirror reflectance, change the optical response of polaritons. Our study contributes to an improved microscopic understanding of exciton–polaritons and their interaction with phonons, potentially suggesting experiments that could determine the energy of dark exciton states via momentum-resolved polariton absorption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.