Abstract

When a detuned and strong laser pulse acts on an optical transition, a Stark shift of the corresponding energies occurs. We analyze how this optical Stark effect can be used to prepare and control the dark exciton occupation in a semiconductor quantum dot. The coupling between the bright and dark exciton states is facilitated by an external magnetic field. Using sequences of laser pulses, we show how the dark exciton and different superposition states can be prepared. We give simple analytic formulas, which yield a good estimate for optimal preparation parameters. The preparation scheme is quite robust against the influence of acoustic phonons. We further discuss the experimental feasibility of the used Stark pulses. Giving a clear physical picture our results will stimulate the usage of dark excitons in schemes to generate photons from quantum dots.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call