Abstract

Experiments with quantum gas microscopes have started to explore the antiferromagnetic phase of the two-dimensional Fermi-Hubbard model and effects of doping with holes away from half filling. In this work we show how direct measurements of the system averaged two-spin density matrix and its full counting statistics can be used to identify different correlated magnetic phases with or without long-range order. We discuss examples of phases which are potentially realized in the Hubbard model close to half filling, including antiferrromagnetically ordered insulators and metals, as well as insulating spin-liquids and metals with topological order. For these candidate states we predict the doping- and temperature dependence of local correlators, which can be directly measured in current experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.