Abstract

The early detection of tipping points, which describe a rapid departure from a stable state, is an important theoretical and practical challenge. Tipping points are most commonly associated with the disappearance of steady-state or periodic solutions at fold bifurcations. We discuss here multifrequency tipping (M tipping), which is tipping due to the disappearance of an attracting torus. M tipping is a generic phenomenon in systems with at least two intrinsic or external frequencies that can interact and, hence, is relevant to a wide variety of systems of interest. We show that the more complicated sequence of bifurcations involved in M tipping provides a possible consistent explanation for as yet unexplained behavior observed near tipping in climate models for the Atlantic meridional overturning circulation. More generally, this Letter provides a path toward identifying possible early warning signs of tipping in multiple-frequency systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.