Abstract

The development of quantum computing systems poses a great threat to the security of existing public key-based systems. As a result, the National Institute of Standards and Technology (NIST) started a Post-Quantum Cryptography (PQC) standardization project in 2015, and currently active research is being conducted to apply PQC to various cryptographic protocols. Unlike elliptic curve cryptography (ECC)-based schemes, PQC requires a large memory footprint and key/signature size. Therefore, when migrating PQC to a protocol, depending on the PQC and protocol specifications, it can be hard to migrate PQC. In the case of the WAVE protocol, it is difficult to satisfy the accuracy of a specific PQC algorithm because segmentation of the signature occurs during transmission due to the limitation of the maximum packet size. Therefore, in this paper, we present two methodologies that can apply PQC while complying with IEEE 1609.2 standards to the WAVE protocol in the V2V environment. Whereas previous migration studies have focused on designing a hybrid mode of protocols, this paper explores solutions more intuitively at the application layer of protocols. We analyzed two postquantum digital signature algorithms (Crystals-Dilithium and Falcon) and the structure of basic-safety messages (BSMs) of the V2V protocol on the size side. Through this, we propose methods that can perform an independent signature verification process without waiting for all divided signatures in the WAVE protocol. Our methodology overcomes the limitation that schemes with large signature sizes cannot be mounted into the WAVE protocol. We also note that the architecture used as an on-board unit (OBU) in an autonomous driving environment is mainly a microprocessor. We investigated an optimized PQC implementation in the OBU environment and simulated our methodology with the V2Verifier. Finally, we measured the accurate latency through simulation in Jetson Xavier, which is mainly used as an OBU in the V2V communication network.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call