Abstract

Traditionally, information security needed encryption, authentication, key management, non-repudiation and authorization which were being met using several techniques. Standardization of algorithms by National Institute of Standards and Technology (NIST) has facilitated international communication for banking and information transfer using these standards. Encryption can be carried out using Advanced Encryption Standard (AES) using variable block lengths (128, 192 or 256 bits) and variable key lengths (128, 192 or 256 bits). Solutions for light weight applications such as those for Internet of Things (IoT) are also being standardized. Message integrity is possible using host of hash algorithms such as SHA-1, SHA-2 etc., and more recently using SHA-3 algorithm. Authentication is possible using well known Rivest-Shamir-Adleman (RSA) algorithm needing 2048/4096 bit operations. Elliptic Curve Cryptography (ECC) is also quite popular and used in several practical systems such as WhatsApp, Blackberry etc. Key exchange is possible using Diffie-Hellman algorithm and its variations. Digital Signatures can be carried out using RSA algorithm or Elliptic Curve Digital Signature Algorithm (ECDSA) or DSA (Digital Signature Algorithm). All these algorithms derive security from difficulty in solving some mathematical problems such as factorization problem or discrete logarithm problem. Though published literature gives evidence of solving factorization problem upto 768 bits only, it is believed that using Quantum computers, these problems could be solved by the end of this decade. This is due to availability of the pioneering work of Shor and Grover [1]. For factoring an integer of N bits, Shor’s algorithm takes quantum gates. As such, there is ever growing interest in being ready for the next decade with algorithms that may resist attacks in the quantum computer era. NIST has foreseen this need and has invited proposals from researchers all over the world. In the first round, about 66 submissions were received which have been scrutinized for completeness of submissions , novelty of the approach and security and 25 of these were promote to second round to improve based on the comments received on the first round submission. These will be analyzed for security and some will be selected for final recommendation for use by industry. These are for encryption/decryption, key agreement, hashing and Digital Signatures for both hardware and software implementations. In this paper, we present a brief survey of the state of the art in post-Quantum Cryptography (PQC) followed by study of one of technique referred to as Learning With Errors (LWE) in some detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call