Abstract

AbstractGyro-phase drift is a guiding center drift that is directly dependent on the charging rate limit of dust grains. The effect of introducing a gyro-phase-dependence on the grain charge leads to two orthogonal components of guiding-center drift. One component, referred to here as grad-q drift, results from the time-varying, gyro-phase angle dependent, in-situ-equilibrium grain charge, assuming that the grain charging is instantaneous. For this component, the grain is assumed to be always in its in-situ-equilibrium charge state and this state gyro-synchronously varies with respect to the grain's average charge state. The other component, referred to here as the gyro-phase drift, arises from any non-instantaneous-charging-induced modification of the diamagnetic drift and points in the direction of -∇RLd (where RLd is the grain gyro-radius), i.e. the direction associated with increasing magnitude of in-situ-equilibrium charge state. For this component, the grain gyro-synchronously undercharges and overcharges with respect to its gyro-synchronously varying, in-situ-equilibrium charge state. These characteristics are illustrated with a single-particle code for predicting grain trajectory that demonstrates how gyro-phase drift magnitude and direction could be exploited, using an extended version of the presented model, as sensitive indicators of the charging time of dust grains because of the cumulative effect of the ever-changing charge state of a grain making repeated excursions in inhomogeneous plasma over many gyro-periods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.