Abstract

Ion velocities in vacuum arc plasmas have been measured for most conducting elements of the Periodic Table. The method is based on drift time measurements via the delay time between arc current modulation and ion flux modulation. A correlation has been found between the element-specific ion velocity and average ion charge state; however, differently charged ions of the same element have approximately the same velocity. These findings contradict the potential hump model but are in agreement with a gasdynamic model that describes ion acceleration as driven by pressure gradients and electron-ion friction. The differences between elements can be explained by the element-specific power density of the cathode spot plasma which in turn determines the temperature, average charge state, and ion velocity of the expanding vacuum arc plasma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call