Abstract

Here we report an ultrafast optical spectroscopic study of the nodal-line semimetal ZrSiTe. Our measurements reveal that, converse to other compounds of the family, the sudden injection of electronic excitations results in a strongly coherent response of an $A_{1g}$ phonon mode which dynamically modifies the distance between Zr and Te atoms and Si layers. "Frozen phonon" DFT calculations, in which band structures are calculated as a function of nuclear position along the phonon mode coordinate, show that large displacements along this mode alter the material's electronic structure significantly, forcing bands to approach and even cross the Fermi energy. The incoherent part of the time domain response reveals that a delayed electronic response at low fluence discontinuously evolves into an instantaneous one for excitation densities larger than $3.43 \times 10^{17}$ cm$^{-3}$. This sudden change of the dissipative channels for electronic excitations is indicative of an ultrafast Lifshitz transition which we tentatively associate to a change in topology of the Fermi surface driven by a symmetry preserving $A_{1g}$ phonon mode.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.