Abstract

An inelastic $\alpha$-scattering experiment on the unstable $N=Z$, doubly-magic $^{56}$Ni nucleus was performed in inverse kinematics at an incident energy of 50 A.MeV at GANIL. High multiplicity for $\alpha$-particle emission was observed within the limited phase-space of the experimental setup. This observation cannot be explained by means of the statistical-decay model. The ideal classical gas model at $kT$ = 0.4 MeV reproduces fairly well the experimental momentum distribution and the observed multiplicity of $\alpha$ particles corresponds to an excitation energy around 96 MeV. The method of distributed $m\alpha$-decay ensembles is in agreement with the experimental results if we assume that the $\alpha$-gas state in $^{56}$Ni exists at around $113^{+15}_{-17}$ MeV. These results suggest that there may exist an exotic state consisting of many $\alpha$ particles at the excitation energy of $113^{+15}_{-17}$ MeV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.