Abstract

Northward propagating summer monsoon intraseasonal oscillations (MISOs) in the Indian Ocean region remain poorly understood and difficult to predict. Here we examine a free-running high-resolution regional atmospheric model (RegCM4.7 with 25 km resolution), forced distantly at the boundaries by atmospheric observations (ERA-Interim, 0.75 $$^{\circ }$$ ) and forced locally by observed sea-surface temperature (SST) over the period 1979–2016, to assess its ability to reproduce key aspects of these MISOs. We find that the model MISO exhibits spatial structures and northward propagation characteristics broadly similar to observed MISO when confining the analysis to the 25–90 day period band. The MISO precipitation anomalies are then shown to be consistent with previously known observed relationships to broad-scale sea-level pressure patterns, Inter-Tropical Convergence Zone (ITCZ) positioning, and changes in the regional Hadley Cell component. The total simulated seasonal (JJAS) rainfall anomalies over India are not significantly correlated with observations, indicating that intrinsic variations in the regional model atmosphere dominate most of the precipitation variability. However, the bandpass-filtered MISO anomalies surprisingly exhibit a significant correlation (0.61) with observations. This suggests that instabilities in the regional broad-scale atmospheric circulation, e.g., linked to the ITCZ position or strength, may be partly controlled by the large-scale atmospheric flows specified at the domain boundaries and/or that specified local SST anomalies may help to guide some fraction of the developing model MISO to follow observations. This result motivates further research on MISO initiation and development using this type of regional atmospheric model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.