Abstract
Northward-propagating Indian summer monsoon intraseasonal oscillations (MISOs) are a major origin of the active–break spells of the monsoon rainfall. Forecast results for 28 active and 27 break spells from the National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2 (CFSv2), during 1999–2010 are analyzed. CFSv2 forecasts are able to represent the propagation of MISOs from the equator to central India, showing improvements in many aspects compared to its previous version. Systematic biases for MISOs, however, still exist, exhibiting apparently weaker amplitude and slower northward propagation compared to observations. The eastern Arabian Sea (EAS)–western Bay of Bengal (WBB) region (EAS–WBB region; 12°–20°N, 65°–85°E) is found to be critical for the MISO prediction. In that region, the forecast and observed MISO trajectories begin to bifurcate from each other, and forecast errors grow rapidly. Further diagnosis reveals that local air–sea interaction in that region is severely underrepresented in CFSv2. Sea surface temperature (SST) response to surface heat flux forcing and convection response to SST forcing are both too weak, leading to the underestimated MISO amplitude. The relationship between precipitation and SST in CFSv2 is much more chaotic than in observation. The misrepresentation of air–sea coupling results in longer MISO periods in the EAS–WBB region, manifesting as slower propagation and delayed arrival of MISOs in central India. Refining the air–sea coupling processes is crucial for improving the CFSv2 forecast. This includes taking into account the ocean skin layer, better resolving the diurnal cycle, and improving the ocean model physics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.