Abstract

We consider indirect detection signals of atomic dark matter, with a massive dark photon which mixes kinetically with hypercharge. In significant regions of parameter space, dark matter remains at least partially ionized today, and dark atom formation can occur efficiently in dense regions, such as the centers of galactic halos. The formation of dark atoms is accompanied by emission of a dark photon, which can subsequently decay into Standard Model particles. We discuss the expected signal strength and compare it to that of annihilating dark matter. As a case study, we explore the possibility that dark atom formation can account for the observed 511 keV line and outline the relevant parameter space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.