Abstract

Development of neuronal circuits is controlled by evolutionarily conserved axon guidance molecules, including Slits, the repulsive ligands for roundabout (Robo) receptors, and Netrin-1, which mediates attraction through the DCC receptor. We discovered that the Robo3 receptor fundamentally changed its mechanism of action during mammalian evolution. Unlike other Robo receptors, mammalian Robo3 isnot a high-affinity receptor for Slits because of specific substitutions in the first immunoglobulin domain. Instead, Netrin-1 selectively triggers phosphorylation of mammalian Robo3 via Src kinases. Robo3 does not bind Netrin-1 directly but interacts with DCC. Netrin-1 fails to attract pontine neurons lacking Robo3, and attraction can be restored inRobo3(-/-) mice by expression of mammalian, butnot nonmammalian, Robo3. We propose that Robo3 evolution was key to sculpting the mammalian brain by converting a receptor for Slit repulsion into one that both silences Slit repulsion and potentiates Netrin attraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.