Abstract

To evaluate the effect of biglycan on the signaling of cytokines (epidermal growth factor, osteogenic protein-1, and interleukin-1) in bovine intervertebral disc cells. Nucleoplasty (NP) and annulus fibrosus (AF) cells of the intervertebral disc tissues were isolated from the tails of young adult bovine. First, the cells were treated in 3 ways: Biglycan alone, cytokines alone (epidermal growth factor, osteogenic protein-1, or interleukin-1), and biglycan combined with cytonkines. Western blot was used to observe the singling of biglycan and cytokines in bovine intervertebral disc cells, and to identify the effect of biglycan on cytokines mentioned above. Biglycan upregulated the signaling (3- 4 folds) with the optimal effect at 10 min and 20 μmol/L both in the AF cells and NP cells. Epidermal growth factor, osteogenic protein-1, or interleukin-1 also upregulated the protein expression in the extracellular matrix of intervertebral disc cells. When combined different biglycan concentrations with epidermal growth factor, osteogenic protein-1, or interleukin-1 to treat the intervertebral disc cells, the concentration of biglycan rose, whereas the cytokine signal decreased both in the bovine AF and NP cells (P<0.01). There was no significant difference between the AF and NP cells. Biglycan can adhere to the intervertebral disc cells to activate the extracellular signal-regulated kinase (ERK) pathway and this effect is time and concentration dependent. Byglycan can decrease not only the anabolism effect of epidermal growth factor and osteogenic protein-1, but also the catabolism effect of interleukin-1. This regulatory role of biglycan may be very important to maintain the metabolism balance. Biglycan may be good for the repair of intervertebral disc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.