Abstract

In the study, an efficient method to perform supervised classification of surface electromyogram (EMG) signals is proposed. The method is based on the choice of a relevant representation space and its optimisation with respect to a training set. As EMG signals are the summation of compact-support waveforms (the motor unit action potentials), a natural tool for their representation is the discrete dyadic wavelet transform. The feature space was thus built from the marginals of a discrete wavelet decomposition. The mother wavelet was designed to minimise the probability of classification error estimated on the learning set (supervised classification). As a representative example, the method was applied to simulate surface EMG signals generated by motor units with different degrees of short-term synchronisation. The proposed approach was able to distinguish surface EMG signals with degrees of synchronisation that differed by 10%, with a misclassification rate of 8%. The performance of a spectral-based classification (error rate approximately 33%) and of the classification with Daubechies wavelet (21%) was significantly poorer than with the proposed wavelet optimisation. The method can be used for a number of different application fields of surface EMG classification, as the feature space is adapted to the characteristics of the signal that discriminate between classes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call