Abstract
The relations between motor unit global firing rates and established quantitative measures for processing the surface electromyogram (EMG) signals were explored using a simulation approach. Surface EMG signals were simulated using the reported properties of the first dorsal interosseous muscle in man, and the models were varied systematically, using several hypothetical relations between motor unit electrical and force output, and also using different motor unit firing rate strategies. The utility of using different EMG processing parameters to help estimate global motor unit firing rate was evaluated based on their relations to the number of motor unit action potentials (MUAPs) in the simulated surface EMG signals. Our results indicate that the relation between motor unit electrical and mechanical properties, and the motor unit firing rate scheme are all important factors determining the form of the relation between surface EMG amplitude and motor unit global firing rate. Conversely, these factors have less impact on the relations between turn or zero-crossing point counts and the number of MUAPs in surface EMG. We observed that the number of turn or zero-crossing points tends to saturate with the increase in the MUAP number in surface EMG, limiting the utility of these measures as estimates of MUAP number. The simulation results also indicate that the mean or median frequency of the surface EMG power spectrum is a poor indicator of the global motor unit firing rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.