Abstract

Extracellular adenosine triphosphate (ATP), at micromolar/nanomolar concentrations, has been shown to induce significant functional changes in a wide variety of normal and transformed cell types. While ATP can be nonspecifically released from the cytosol of damaged cells, it is also co-packaged in certain exocytotic vesicles/granules containing conventional neurotransmitters and hormones. The diverse biologic responses to ATP appear to be mediated by a variety of so-called P2-purinergic, cell surface receptors that are activated upon binding ATP and other nucleotides. Recent physiologic, biochemical, and pharmacologic studies suggest that there are multiple ATP receptor subtypes. These include: (1) G-protein-coupled ATP receptors, which stimulate inositol phospholipid hydrolysis, Ca2+ mobilization, and activation of protein kinase C; (2) ATP receptors that directly activate nonselective cation channels in the plasma membranes of a variety of excitable cell types; and (3) ATP receptors that, via the rapid induction of surface membranes pores permeable to both ions and endogenous metabolites, can produce cytotoxic or activation responses in T lymphocytes and other immune effector cells. In addition to these functional criteria, these putative ATP receptor subtypes can be distinguished by characteristic selectivities for a variety of structurally modified ATP analogs. Current research is directed towards the identification, isolation, and structural characterization of these receptors by both biochemical and molecular biologic approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call