Abstract

Background/Aims: Adenosine 5′-triphosphate (ATP) mediates a variety of signal transductions via ATP receptors such as P2X and P2Y receptors. The present study aimed at understanding the mechanism underlying extracellular ATP-induced suppression of Caco-2 human colonic cancer cell proliferation. Methods: Caco-2 cells were cultured. To examine cell viability and cell cycling, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, fluorescent cytochemistry, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay, and flow cytometry were carried out. To see mRNA expression of ATP receptors, reverse transcription-polymerase chain reaction (RT-PCR) was performed. To examine PKC activity and mitogen-activated protein (MAP) kinase activity, in situ PKC assay and Western blotting using an anti-extracellular signal-regulated kinase 1 (ERK1)-antibody and an anti-phospho-ERK antibody were carried out. Results: Extracellular ATP or the unhydrolyzed ATP analogue 5′-adenylyimido-diphosphate (AMP-PNP) reduced Caco-2 cell viability in a concentration (10 µM-10 mM)-dependent manner at 48-h treatment, and the effect was not affected by caspase inhibitors. Caco-2 cells were little reactive to propidium iodide and Hoechst 33342 or little positive to TUNEL after 48-h treatment with ATP (1 mM). In the flow cytometry, 48-h treatment with ATP (1 mM) arrested cell cycling at the S phase in Caco-2 cells. P<sub>2</sub> purinoceptor agonists reduced Caco-2 cell viability with the order of potency: 2-methylthio ATP>UTP>β, γ-methylene ATP, and the ATP effect was partially inhibited by suramin, a non-selective inhibitor of P<sub>2</sub> purinoceptors. The PKC inhibitor GF109203X or the MAP kinase kinase inhibitor PD98059 reduced Caco-2 cell viability to an extent similar to that achieved by ATP (1 mM), and no further reduction was obtained with co-treatment with ATP. ATP and its ATP analogues such as AMP-PNP and ATPγS, at higher concentrations (1-10 mM), inhibited PKC activation in Caco-2 cells in a fashion that mimics the effect of GF109203X, but PD98059 exhibited no effect on PKC activation. The inhibitory effect of ATP on PKC activation was not found with SK-N-SH cells, a human neuroblastoma cell line, but the cells expressed all the mRNAs for P2X and P2Y receptors that Caco-2 cells did. ATP (10 mM) or GF109203X inhibited activation of ERK, a MAP kinase, in Caco-2 cells. Conclusion: Extracellular ATP, at higher concentrations, suppresses Caco-2 cell proliferation at the S phase of cell cycling by inhibiting PKC, possibly as mediated via an unknown ATP receptor, followed by MAP kinase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.