Abstract

Degradation of the ignition system can result in startup failure in an aircraft’s auxiliary power unit. In this paper, a novel acoustics-based solution that can enable condition monitoring of an APU ignition system was proposed. In order to support the implementation of this research study, the experimental data set from Cranfield University’s Boeing 737-400 aircraft was utilized. The overall execution of the approach comprised background noise suppression, estimation of the spark repetition frequency and its fluctuation, spark event segmentation, and feature extraction, in order to monitor the state of the ignition system. The methodology successfully demonstrated the usefulness of the approach in terms of detecting inconsistencies in the behavior of the ignition exciter, as well as detecting trends in the degradation of spark acoustic characteristics. The identified features proved to be robust against non-stationary background noise, and were also found to be independent of the acoustic path between the igniter and microphone locations, qualifying an acoustics-based approach to be practically viable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.