Abstract
The brain signals can be converted to a command to control some external device using a brain-computer interface system. The unimodal BCI system has limitations like the compensation of the accuracy with the increase in the number of classes. In addition to this many of the acquisition systems are not robust for real-time application because of poor spatial or temporal resolution. To overcome this, a hybrid BCI technology that combines two acquisition systems has been introduced. In this work, we have discussed a preprocessing pipeline for enhancing brain signals acquired from fNIRS (functional Near Infrared Spectroscopy) and EEG (Electroencephalography). The data consists of brain signals for four tasks – Right/Left hand gripping and Right/Left arm raising. The EEG (brain activity) data were filtered using a bandpass filter to obtain the activity of mu (7-13 Hz) and beta (13-30 Hz) rhythm. The Oxy-haemoglobin and Deoxy-haemoglobin (HbO and HbR) concentration of the fNIRS signal was obtained with Modified Beer Lambert Law (MBLL). Both signals were filtered using a fifth-order Butterworth band pass filter and the performance of the filter is compared theoretically with the estimated signal-to-noise ratio. These results can be used further to improve feature extraction and classification accuracy of the signal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.