Abstract

Research on brain-computer interface (BCI) systems began in the 1970s at the University of California Los Angeles (UCLA) (Vidal, 1973; 1977). The author gave in his papers the expression Brain Computer Interface which is the term currently used in literature. A BCI system is a direct communication pathway between a brain and an external artificial device. BCI systems were aimed at assisting, augmenting or repairing human cognitive or sensory-motor functions. The BCI systems (BCIs) allow control of an artificial device based on the features extracted from voluntary electric, magnetic, or other physical manifestations of brain activity collected from epior subdurally from the cortex or from the scalp or in invasive electrophysiological manner, i.e. brain signals recorded intracortically with single electrode or multi-electrode arrays (Dornhege et al., 2007). There is a variety of non-invasive techniques for measuring brain activity. These non-invasive techniques include, the electroencephalography (EEG), magnetoencephalography (MEG), positron emission tomography (PET), functional magnetic resonance imaging (fMRI), and optical imaging. However, for technical, time resolution, realtime, and price constraints, only EEG monitoring and related techniques are employed in the BCI community. For more details refer to (Wolpaw et al., 2002; Mason et al., 2007; Dobkin, 2007). The neuronal electrical activity contain a broad band frequency, so the monitored brain signals are filtered and denoised to extract the relevant information (see section 3) and finally this information is decoded (see section 6) and commuted into device commands by synchronous control or more efficiently by self-paced or asynchronous control in order to detect whether a user is intending something or not (see chapter 7 in (Dornhege et al., 2007) for details), Fig. 1. For some specific BCI tasks, raw brain signal serves as stimulus as well as a control interface feedback. The direct BCIs can be seen as a new means of communication that may be used to allow tetraplegic or individuals with severe motor or neuromuscular diseases (e.g. Amyotrophic lateral sclerosis (ALS), brainstem stroke, brain or spinal cord injury, cerebral palsy, muscular

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call