Abstract

The capacity and error probability of orthogonal space-time block codes (STBCs) are considered for the pulse-amplitude modulation (PAM), phase shift keying (PSK), quadrature-amplitude modulation (QAM) in fading channels. The suggested approach is based on employment of the generalized approach to signal processing in noise over the equivalent scalar additive white Gaussian noise channel with a channel gain proportional to the Frobenius norm of the matrix channel for the STBC. Using this effective channel, the capacity and probability of error expressions are derived for the PSK, PAM, and QAM modulation with space-time block coding. The Rayleigh, Rician and Nakagami fading channels are considered. As an application, these results are extended to obtain the capacity and probability of error for a multiuser direct sequence code-division multiple-access (CDMA) system constructed on the basis of the generalized approach to signal processing in noise employing the space-time block coding

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.