Abstract

Neutrophils migrate to sites of tissue damage, where they protect the host against pathogens. Often, the cost of these neutrophil defenses is collateral damage to healthy tissues. Thus, the immune system has evolved multiple mechanisms to regulate neutrophil migration. One of these mechanisms is reverse migration — the process whereby neutrophils leave the source of inflammation. In vivo, neutrophils arrive and depart the wound simultaneously — indicating that neutrophils dynamically integrate conflicting signals to engage in forward and reverse migration. This finding is seemingly at odds with the established chemoattractant hierarchy in vitro, which places wound-derived signals at the top. Here we will discuss recent work that has uncovered key players involved in retaining and dispersing neutrophils from wounds. These findings offer the opportunity to integrate established and emerging mechanisms into a holistic model for neutrophil migration in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.