Abstract

This paper experimentally verifies that for low bias voltages /spl Lt/2 kT/q, the noise of a saturated magnetic tunnel junction (MTJ) device is caused by thermally assisted barrier crossings (thermal noise), whereas for voltages /spl Gt/2 kT/q, it stems from field-assisted barrier crossings (shot noise). This can also be used as a criterion for an MTJ with a healthy, defect-free barrier. A new dual-channel ultralow-noise amplifier is described allowing noise measurements for very low resistance (large area) devices. A "barrier defect model" is developed and verified for noise, tunneling magnetoresistance ratio (TMR), and defective area, using healthy MTJ devices, which are given controlled defects by means of pulsed electrical overstress. It is shown that MTJ devices are very electrostatic-damage prone; narrow voltage pulses (0.5 ns) can damage the sensors at relatively low voltages (1.5 V). Relationships are shown between pulse voltage, pulse energy, duration, number of pulses, and the drop in sensor resistance. Finally, the sensor signal-to-noise, bandwidth, and electronic readout are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.