Abstract

Carbon nanomaterial combined with aptamer has been developed as an efficient bioanalytical method in sensor design. Herein, depending on carbon nanoparticle (cCNP)-enhanced fluorescence anisotropy (FA), a novel aptamer-based sensor (aptasensor) enabling signal-amplification and real-time detection of apyrase is reported. The foundation of our sensor design based on ATP-aptamer(P) can be adsorbed on the surface of cCNPs, resulting in the increase of FA due to the mass of cCNPs, and P–ATP complex has weak binding ability to cCNPs with minimal change of FA. Apyrase, being an integral membrane protein, can hydrolyze ATP and make P–ATP complex disassemble, and thus lead to the increasing of FA. Therefore, this approach is demonstrated to be a novel candidate for the detection of apyrase, with high sensitivity and selectivity. The linear dynamic range for the concentrations of apyrase is between 0.1 and 0.5U/μL along with a detection limit of 0.05U/μL. Furthermore, these results indicated that our design is a flexible and sensitive method for biomolecule analysis, which makes it promising for practical biomolecule analyses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.