Abstract

Metal matrix composites have been recognized as a feasible approach to obtain a new generation of biodegradable Zn-based material. Nevertheless, there is a great challenge in achieving good dispersion properties of the bioactive reinforcements within zinc matrix. A novel and facile approach, namely graphene oxide (GO)-assisted hetero-aggregation, were developed to achieve uniformly dispersed nanoceramics in the Zn matrix, by using very low-content (0.03 vol%) GO as a linker between the Zn matrix and reinforcement. The negatively-charged GO becomes a suitable “bridge” connected the positively-charged metallic powder and bioactive reinforcement by charge neutralization in polarity solvent. Three kinds of reinforcements, including MgO, ZnO and CuO, were used to verify the feasibility of the above-mentioned method. As-sintered 3CuO/Zn matrix composites, which possessed uniformly distributed reinforcement, uniaxial compressive strength of 301.2 MPa, failure strain over 40%, moderate corrosion rate of 0.063 mm·y−1, acceptable cytocompatibility and antibacterial property, should be a useful material for orthopedic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.