Abstract

Recent studies indicate that there is a great demand to optimize pure Zn with tunable degradation rates and more desirable biocompatibility as orthopedic implants. Metal matrix composite (MMC) can be a promising approach for this purpose. In this study, MMC with pure Zn as a matrix and hydroxyapatite (HA) as reinforcements were prepared by spark plasma sintering (SPS). Feasibility of novel Zn-HA composites to be used as orthopedic implant applications was systematically evaluated. After sintering, HA distributed in the Zn particle boundaries uniformly. Corrosion tests indicated that the degradation rates of Zn-HA composites were adjustable due to the biphasic effects of HA. Zn-HA composites showed significantly improved cell viability of osteoblastic MC3T3-E1 cells compared with pure Zn. Both pure Zn and composites exhibited a low thrombosis risk and hemolysis rates while a Zn ion concentration-dependent effect was found on coagulation time. An effective antibacterial property was observed as well. The volume loss of pure Zn and Zn-5HA composite was 1.7% and 3.2% after 8 weeks’ implantation. Histological analysis found newly formed bone surrounding pure Zn and Zn-5HA composite at week 4 and increased bone mass over time. With prolonged implantation time, Zn-5HA composite was more effective on stimulating new bone formation than pure Zn. In summary, MMC is a feasible way to design Zn based materials with adjustable degradation rates and improved biocompatibility. Statement of SignificanceBiodegradable zinc materials are promising candidates for the new generation of orthopedic implants. However, the slow degradation rates and unsatisfactory cytocompatibility of pure Zn in bone environments limit its future clinical applications. Generally, alloying is a common way to improve the performance of pure Zn. In this study, metal matrix composite was chosen as a novel strategy to solve the problems. Hydroxyapatite, as a bioactive component, was added into Zn matrix via spark plasma sintering. We find that Zn-HA composites exhibited adjustable degradation rates and improved biocompatibility both in vitro and in vivo. This study provides exhaustive and significant information including microstructure, mechanical performance, degradation behavior, biocompatibility, hemocompatibility and antibacterial property for the future Zn based implants design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call