Abstract
Abstract: Sign language is an essential communication tool for India's Deaf and Hard of Hearing people. This study introduces a novel approach for recognising and synthesising Indian Sign Language (ISL) using Long Short-Term Memory (LSTM) networks. LSTM, a kind of recurrent neural network (RNN), has demonstrated promising performance in sequential data processing. In this study, we leverage LSTM to develop a robust ISL recognition system, which can accurately interpret sign gestures in real-time. Additionally, we employ LSTM-based models for ISL synthesis, enabling the conversion of spoken language into sign language for improved inclusivity and accessibility. We evaluate the proposed approach on a diverse dataset of ISL signs, achieving high recognition accuracy and natural sign synthesis. The integration of LSTM in ISL technology holds significant potential for breaking down communication barriers and improving the quality of life for India's deaf and hard of hearing people
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Research in Applied Science and Engineering Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.