Abstract

Communication is an integral part of our day-to-day lives. People experiencing difficulty in speaking or hearing often feel neglected in our society. While Automatic Speech Recognition Systems have now progressed to the purpose of being commercially viable, Signed Language Recognition Systems are still in the early stages. Currently, all such interpretations are administered by humans. Here, we present an approach using ensembled architecture for the classification of Sign Language characters. The novel ensemble of InceptionV3 and ResNet101 achieved an accuracy of 97.24% on the ASL dataset.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.