Abstract

We construct a ring of meromorphic Siegel modular forms of degree 2 and level 5, with singularities supported on an arrangement of Humbert surfaces, which is generated by four singular theta lifts of weights 1, 1, 2, 2 and their Jacobian. We use this to prove that the ring of holomorphic Siegel modular forms of degree 2 and level Gamma _0(5) is minimally generated by eighteen modular forms of weights 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 10, 11, 11, 11, 13, 13, 13, 15.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.