Abstract
Siderophores are biosynthetically produced and secreted by many bacteria, yeasts, fungi and plants, to scavenge for ferric iron (Fe(3+)). They are selective iron-chelators that have an extremely high affinity for binding this trivalent metal ion. The ferric ion is poorly soluble but it is the form of iron that is predominantly found in oxygenated environments. Siderophore uptake in bacteria has been extensively studied and over the last decade, detailed structural information for many of the proteins that are involved in their transport has become available. Specifically, numerous crystal structures for outer membrane siderophore transporters, as well as for soluble periplasmic siderophore-binding proteins, have been reported. Moreover, unique siderophore-binding proteins have recently been serendipitously discovered in humans, and the structures of some of their siderophore-complexes have been characterized. The binding pockets for different ferric-siderophores in these proteins have been described in great molecular detail. In addition to highlighting this structural information, in this review paper we will also briefly discuss the relevant chemical properties of iron, and provide a perspective on our current understanding of the human and bacterial iron uptake pathways. Potential clinical uses of siderophores will also be discussed. The emerging overall picture is that iron metabolism plays an extremely important role during bacterial infections. Because levels of free ferric iron in biological systems are always extremely low, there is serious competition for iron and for ferric-siderophores between pathogenic bacteria and the human or animal host.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.