Abstract
We experimentally and theoretically show that the electron energy spectra strongly depend on the relative helicity in highly intense, circularly polarized two-color laser fields which is an unexpected finding. The employed counter-rotating two-color (CRTC) fields and the co-rotating two-color (CoRTC) fields are both a superposition of circularly polarized laser pulses at a central wavelength of 390 nm and 780 nm (intensitiy ratio $I_{390}/I_{780}\approx 250$). For the CRTC field, the measured electron energy spectrum is dominated by peaks that are spaced by 3.18 eV (corresponds to the photon energy of light at a wavelength of 390 nm). For the CoRTC field, we observe additional energy peaks (sidebands). Using our semi-classical, trajectory-based models, we conclude that the sideband intensity is modulated by a sub-cycle interference, which sensitively depends on the relative helicity in circularly polarized two-color fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.