Abstract

We demonstrate control over the localization of high-lying Rydberg wave packets in argon atoms with phase-locked orthogonally polarized two-color (OTC) laser fields. With a reaction microscope, we measured ionization signals of high-lying Rydberg states induced by a weak dc field and black-body radiation as a function of the relative phase between the two-color fields. We find that the dc-field ionization yields of high-lying Rydberg argon atoms oscillate with the relative two-color phase with a period of $2\pi$ while the photoionization signal by black-body radiation shows a period of $\pi$. These observations are a clear signature of the asymmetric localization of electrons recaptured into high-lying Rydberg states after conclusion of the laser pulse and are supported by a semiclassical simulation of argon-OTC laser interaction. Our findings thus open an effective pathway to control the localization of high-lying Rydberg wave packets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.