Abstract

SiCl4-based reactive ion etching (RIE) is used to etch MgxZn1−xO (0≤x≤0.3) films grown on r-plane sapphire substrates. The RIE etch rates are investigated as a function of Mg composition, RIE power, and chamber pressure. SiO2 is used as the etching mask to achieve a good etching profile. In comparison with wet chemical etching, the in-plane etching anisotropy of MgxZn1−xO (0≤x≤0.3) films is reduced in RIE. X-ray photoelectron spectroscopy measurements show that there is no Si and Cl contamination detected at the etched surface under the current RIE conditions. The influence of the RIE to the optical properties has been investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.