Abstract

In this work, an Al2O3-coated SiC foam monolith was used as the support of a Ni-based catalyst, which was applied for coupling partial oxidation and steaming reforming of methane to produce syngas or hydrogen. This monolithic catalyst showed excellent structural stability in a 900h endurance test. Its catalytic activity and stability were also excellent during the first 500h of the endurance test with a CH4 conversion (∼96%) near thermodynamic equilibrium. Subsequently, it deactivated gradually and its activity was reduced by 7% in the following 400h. This deactivation is ascribed to deposited carbon that originated from methane cracking in the upper part of the stainless steel reactor. Fresh and used catalyst samples were characterized by XRD, BET, SEM and XRF methods. The results showed that the active coating consisting of Al2O3, and the components loaded on it was partially dislodged from the SiC substrate during the reaction, but the loss of Ni loaded on the Al2O3 coating was less than the loss of Al2O3. This is ascribed to most Ni species being located on the outer surface of the monolithic support, which was more weakly corroded by the reactant flow. The shrinkage of the active coating and the sintering of nickel particles were also observed in the endurance test. Moreover, the SiC foam supported Ni-based monolithic catalyst showed a more homogeneous bed temperature distribution compared with a traditional Ni/Mg–Al spinel catalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.