Abstract

The automated identification and localisation of grid disturbances is a major research area and key technology for the monitoring and control of future power systems. Current recognition systems rely on sufficient training data and are very error-prone to disturbance events, which are unseen during training. This study introduces a robust Siamese recurrent neural network using attention-based embedding functions to simultaneously identify and locate disturbances from synchrophasor data. Additionally, a novel double-sigmoid classifier is introduced for reliable differentiation between known and unknown disturbance types and locations. Different models are evaluated within an open-set classification problem for a generic power transmission system considering different unknown disturbance events. A detailed analysis of the results is provided and classification results are compared with a state-of-the-art open-set classifier.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call