Abstract
Establishing an accurate and robust feature fusion mechanism is key to enhancing the tracking performance of single-object trackers based on a Siamese network. However, the output features of the depth-wise cross-correlation feature fusion module in fully convolutional trackers based on Siamese networks cannot establish global dependencies on the feature maps of a search area. This paper proposes a dynamic cascade feature fusion (DCFF) module by introducing a local feature guidance (LFG) module and dynamic attention modules (DAMs) after the depth-wise cross-correlation module to enhance the global dependency modeling capability during the feature fusion process. In this paper, a set of verification experiments is designed to investigate whether establishing global dependencies for the features output by the depth-wise cross-correlation operation can significantly improve the performance of fully convolutional trackers based on a Siamese network, providing experimental support for rational design of the structure of a dynamic cascade feature fusion module. Secondly, we integrate the dynamic cascade feature fusion module into the tracking framework based on a Siamese network, propose SiamDCFF, and evaluate it using public datasets. Compared with the baseline model, SiamDCFF demonstrated significant improvements.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have