Abstract

We study the magnetotransport properties of high-mobility holes in monolayer and bilayer WSe_{2}, which display well defined Shubnikov-de Haas (SdH) oscillations, and quantum Hall states in high magnetic fields. In both mono- and bilayer WSe_{2}, the SdH oscillations and the quantum Hall states occur predominantly at even filling factors, evincing a twofold Landau level degeneracy. The Fourier transform analysis of the SdH oscillations in bilayer WSe_{2} reveals the presence of two subbands localized in the top or the bottom layer, as well as negative compressibility. From the temperature dependence of the SdH oscillations we determine a hole effective mass of 0.45m_{0} for both mono- and bilayer WSe_{2}.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.