Abstract
A translation surface is given by polygons in the plane, with sides identified by translations to create a closed Riemann surface with a flat structure away from finitely many singular points. Understanding geodesic flow on a surface involves understanding saddle connections. Saddle connections are the geodesics starting and ending at these singular points and are associated to a discrete subset of the plane. To measure the behavior of saddle connections of length at most R, we obtain precise decay rates as R→∞\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$R\\rightarrow \\infty $$\\end{document} for the difference in angle between two almost horizontal saddle connections.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have