Abstract
The scarcity of high-quality water resources may lead to the use of lower quality water for plant production. Quinoa (Chenopodium quinoa) plants have great potential for human nutrition, but poor water quality, such as metal contamination in wastewater, affects the seed quality. This study aims to investigate the effects of shrimp-waste-derived biochar (SWB) on the uptake of toxic metals from wastewater by quinoa plants. Additionally, the study investigates how quinoa plants’ antioxidant defenses respond to wastewater and SWB treatments. Shrimp-waste-derived biochar (SWB) was prepared by pyrolysis at 350 °C for 3 h and added to the soil at the levels of 0, 1, and 2% (based on soil weight), which are namely C, SWB1, and SWB2, respectively. SWB was applied to quinoa plants cultivated in pots filled with sandy soil and irrigated with fresh or wastewater for a continuous 90 days. The wastewater was contaminated with manganese (Mn), iron (Fe), copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb). Quinoa seeds that were irrigated with wastewater had Cd and Pb concentrations that were above the allowable levels (for human consumption) in the absence of biochar (C) or addition of SWB1. Wastewater significantly reduced quinoa growth and photosynthetic pigments, while SWB significantly mitigated the metal toxicity and improved growth. SWB2 significantly reduced the Pb and Cd concentrations in quinoa leaves by 29 and 30% compared with C. The Cd and Pb concentrations in quinoa seeds were safe for human consumption and below the maximum allowable limits when the soil was amended with SWB2. SWB improved the synthesis of photosynthetic pigments and increased the activity of antioxidant enzymes such as polyphenol oxidase and ascorbate peroxidase. SWB reduced the toxic metal availability and uptake, mitigated the oxidative stress, and minimized the levels of malondialdehyde and hydrogen peroxide. The SWB addition stimulated quinoa’s antioxidant defense and protected plant cells by eliminating reactive oxygen species. The addition of 2% (w/w) shrimp waste biochar improved the quality of quinoa seeds irrigated with wastewater and decreased their toxic metal content. The obtained results contribute to sustainable development and the exploitation of wastewater to irrigate quinoa plants in arid degraded soil; additionally, it also helps in the recycling of shrimp waste.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have