Abstract
Src homology-2 domain-containing protein tyrosine phosphatase (SHP2), encoded by protein tyrosine phosphatase non-receptor type 11 (PTPN11), is widely expressed in several human tissue types, and plays an important role in a variety of diseases. The present study assessed the impact of SHP2 on the occurrence, development and prognosis of solid tumors. The transcriptome sequencing data of 33 cancer types were downloaded from The Cancer Genome Atlas database. Clinical information of the corresponding patients, tumor mutational burden and information pertinent to microsatellite instability were also downloaded. The log-rank test and univariate Cox's regression test were used to evaluate patient survival. The 'ESTIMATE' method was used to assess the tumor microenvironment, and the 'CIBERSORT' algorithm was used to evaluate tumor immune cell infiltration. Spearman's correlation analysis was used to evaluate the correlation between SHP2 expression and the targets identified. ELISA was used to assess the SHP2 expression levels in peripheral blood samples of patients with breast, ovarian, endometrial and cervical cancer. The data indicated that the expression levels of SHP2 were increased in a variety of tumor tissues, and were associated with tumor progression and prognosis. In peripheral blood, the positive rates of SHP2 expression in breast cancer (71.43%) and ovarian cancer (58.82%) were significantly higher than those in the corresponding control groups. However, the positive rates of SHP2 expression in patients with endometrial cancer (31.03%) and cervical cancer (41.30%) were significantly lower than those in the corresponding control groups. Increased SHP2 expression improved overall survival (OS) and disease free survival (DFS) time in patients with kidney renal clear cell carcinoma. However, increased SHP2 expression reduced OS and DFS in patients with urothelial carcinoma, and cervical and endocervical cancer types. Moreover, the elevated expression of SHP2 could also reduce the OS of patients with breast invasive carcinoma, mesothelioma and liver hepatocellular carcinoma. PTPN11 expression was associated with the tumor microenvironment of various tumor types. The tumor mutational burden of various tumor types was associated with microsatellite instability. PTPN11 inhibited T-cell activation and promoted M2 macrophage activation in several tumors. Therefore, SHP2 may be used in the evaluation of tumor progression and prognosis, and it may be an optimal potential biological target for cancer therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.