Abstract

For conventional wavelength (UV-vis-IR) lasers delivering radiation energy to the surface of materials, ablation thresholds, ablation (etch) rates, and the quality of ablated structures often differ dramatically between short (typically nanosecond) and ultrashort (typically femtosecond) pulses. Various short-wavelength (<100 nm) lasers emitting pulses with durations ranging from ~10 fs to ~1 ns have recently been put into routine operation. This makes it possible to investigate how ablation characteristics depend on pulse duration in the XUV spectral region. Four sources of intense short-wavelength radiation available in the authors' laboratories, including XUV and soft x-ray lasers, are used for the ablation experiments. Based on the results of the experiments, the etch rates for three different pulse durations are compared using the XUV-ABLATOR code to compensate for the wavelength difference. Comparing the values of etch rates calculated for nanosecond pulses with those measured for shorter pulses, we can study the influence of pulse duration on XUV ablation efficiency. The results of the experiments also show that the ablation rate increases while the wavelength decreases from the XUV spectral region toward x-rays, mainly due to increase of attenuation lengths at short wavelengths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.