Abstract

Accurate measurement of the radiative properties of clouds and aerosols is of great significance to global climate change and numerical weather prediction. The multi-angle polarization imager (MAPI) onboard the Fengyun-3 precipitation satellite, planned to be launched in 2023, will provide the multi-angle, multi-shortwave infrared (SWIR) channels and multi-polarization satellite observation of clouds and aerosols. MAPI operates in a non-sun-synchronized inclined orbit and provides images with a spatial resolution of 3 km (sub-satellite) and a swath of 700 km. The observation channels of the MAPI include 1030 nm, 1370 nm, and 1640 nm polarization channels and corresponding non-polarization channels, which provide observation information from 14 angles. In-flight radiometric and polarimetric calibration strategies are introduced, aiming to achieve radiometric accuracy of 5% and polarimetric accuracy of 2%. Simulation experiments show that the MAPI has some unique advantages of characterizing clouds and aerosols. For cloud observation, the polarization phase functions of the 1030 nm and 1640 nm around the scattering angle of a cloudbow show strong sensitivity to cloud droplet radius and effective variance. In addition, the polarized observation of the 1030 nm and 1640 nm has a higher content of information for aerosol than VIS-NIR. Additionally, the unique observation geometry of non-sun-synchronous orbits can provide more radiometric and polarization information with expanded scattering angles. Thus, the multi-angle polarization measurement of the new SWIR channel onboard Fengyun-3 can optimize cloud phase state identification and cloud microphysical parameter inversion, as well as the retrieval of aerosols. The results obtained from the simulations will provide support for the design of the next generation of polarized imagers of China.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.