Abstract

High-harmonic spectroscopy probes molecular dynamics using electrons liberated from the same molecule earlier in the laser cycle. It affords sub-Ångstrom spatial and subfemtosecond temporal resolution. Nuclear dynamics in the intermediate cation influence the spectrum of the emitted high-harmonic photons through an autocorrelation function. Here, we develop an analytical approach for computing short-time nuclear autocorrelation functions in the vicinity of conical intersections, including laser-induced and nonadiabatic coupling between the surfaces. We apply the technique to two molecules of current experimental interest, C6H6 and C6H5F. In both molecules, high-harmonics generated within the same electronic channel are not sensitive to nonadiabatic dynamics, even in the presence of substantial population transfer. Calculated autocorrelation functions exhibit significant deviations from the expected Gaussian decay and may undergo revivals at short (∼1.5 fs) times. The associated phase of the nuclear wavepacket provides a possible experimental signature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.