Abstract
AbstractWind power is an exceptionally clean source of energy; its rational utilization can fundamentally alleviate the energy, environment, and development problems, especially under the goals of ‘carbon peak’ and ‘carbon neutrality’. A combined short‐term wind power prediction based on long short‐term memory (LSTM) artificial neural network has been studied aiming at the non‐linearity and volatility of wind energy. Due to the large amount of historical data required to predict the wind power precisely, the ambient temperature and wind speed, direction, and power are selected as model input. The Complete Ensemble Empirical Mode Decomposition with Adaptive Noise has been introduced as data preprocessing to decompose wind power data and reduce the noise. And the Particle Swarm Optimization is conducted to optimize the LSTM network parameters. The combined prediction model with high accuracy for different sampling intervals has been verified by the wind farm data of Chongli Demonstration Project in Hebei Province. The results illustrate that the algorithm can effectively overcome the abnormal data influence and wind power volatility, thereby providing a theoretical reference for precise short‐term wind power prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.