Abstract
Regression Tree (RT) forecasting models are widely used in short-term demand forecasting. Likewise, Self-Organizing Maps (SOM) models are known for their ability to cluster and organize unlabeled big data. Herein, a combination of these two Machine Learning (ML) techniques is proposed and compared to a standalone RT and a Seasonal Autoregressive Integrated Moving Average (SARIMA) models, in forecasting the short-term water demand of a municipality. The inclusion of the Unsupervised Machine Learning clustering model has resulted in a significant improvement in the performance of the Supervised Machine Learning forecasting model. The results show that using the output of the SOM clustering model as an input for the RT forecasting model can, on average, double the accuracy of water demand forecasting. The Mean Absolute Percentage Error (MAPE) and the Normalized Root Mean Squared Error (NRMSE) were calculated for the proposed models forecasting 1 h, 8 h, 24 h, and 7 days ahead. The results show that the hybrid models outperformed the standalone RT model, and the broadly used SARIMA model. On average, hybrid models achieved double accuracy in all 4 forecast periodicities. The increase in forecasting accuracy afforded by this hybridized modeling approach is encouraging. In our application, it shows promises for more efficient energy and water management at the water utilities.
Highlights
Marching forward toward true sustainability, reliable and resilient water systems are essential in a world facing the challenge of water scarcity
It can be observed that the forecast in all time horizons have a relatively better overall performance when Regression Tree (RT), and HYB models are deployed compared to the simple linear Seasonal Autoregressive Integrated Moving Average (SARIMA) models
The Mean Absolute Percentage Error (MAPE) for RT model was 15% to 25% less compared to the SARIMA models, forecasting 1 h, 8 h, 24 h, and 7 days ahead
Summary
Marching forward toward true sustainability, reliable and resilient water systems are essential in a world facing the challenge of water scarcity. The application of water demand forecasting is crucial for optimal operation and control of Smart Water Grids (SWG) (Public Utilities Board Singapore 2016). Supplying water at lower cost, with less energy, and lighter load on the network infrastructure is a primary goal of water utilities. This goal is achieved through multiple practices and applications in the water supply system; one of which is an accurate forecast of the systems’ future demand. Short-term water demand forecasting has been employed by a plethora of utilities, researchers, and developers to tackle the imbalance between supply and demand. Short-term water demand forecasting can be used to manage water pressure,
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.