Abstract

Total hip arthroplasty is performed more frequently in younger patients nowadays, making long-term bone stock preservation an important topic. A mechanism for late implant failure is periprosthetic bone loss, caused by stress shielding around the hip stem due to different load distribution. Short stems are designed to keep the physical loading in the proximal part of the femur to reduce stress shielding. The aim of this review is to give more insight into how short and anatomic stems behave and whether they succeed in preservation of proximal bone stock.A systematic literature search was performed to find all published studies on bone mineral density in short and anatomic hip stems. Results on periprosthetic femoral bone mineral density, measured with dual-energy X-ray absorptiometry (DEXA), were compiled and analysed per Gruen zone in percentual change.A total of 29 studies were included. In short stems, Gruen 1 showed bone loss of 5% after one year (n = 855) and 5% after two years (n = 266). Gruen 7 showed bone loss of 10% after one year and –11% after two years. In anatomic stems, Gruen 1 showed bone loss of 8% after one year (n = 731) and 11% after two years (n = 227). Gruen 7 showed bone loss of 14% after one year and 15% after two years.Short stems are capable of preserving proximal bone stock and have slightly less proximal bone loss in the first years, compared to anatomic stems. Cite this article: EFORT Open Rev 2021;6:1040-1051. DOI: 10.1302/2058-5241.6.210030

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call