Abstract

Recurrent neural networks (RNNs) are the most effective technology to study and analyze the future performance of solar irradiance. Bidirectional RNNs (BRNNs) provide the key benefit of manipulating the data with two different hidden layers in two opposite directions and can feed back to the same layer of output. In this approach, the output layers can simultaneously receive information from the past (backward layers) and the future (forward layers). A bidirectional long short-term memory (BI-LSTM) model was developed and employed to predict solar irradiance values for the next 169 hours based on hourly historical data (01-01-1985 to 16-09-2020) from Tabuk city. The findings specifically demonstrate that in terms of classification and considerations, the BI-LSTM model has promising performance with notable accuracy. In addition, the model is capable of coping with the selected size of sequential data. The prediction accuracy and performance of the BI-LSTM model were highly enhanced when external data such as wind speed and temperature were provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.